3.5 Application of a fixed point theorem in partial ordered sets to boundary value problems for 3.5 order differential equations.

Masashi Toyoda Toshikazu Watanabe

Faculty of Engineering, Tamagawa University, 6–1–1 Tamagawa-gakuen, Machida-shi, Tokyo 194–8610

College of Science and Technology, Nihon University, 1–8–14 Kanda-Surugadai, Chiyoda-ku, Tokyo 101–8308

Abstract

In this paper, we apply a fixed point theorem in partial ordered sets to boundary value problems for fractional order differential equations. In particular, we consider α order differential equations where $3 < \alpha \leq 4$. To prove our main theorem, we use a fixed point theorem in [6].

Keywords: Fixed point theorem, fractional boundary value problem, partially ordered set.

1 はじめに

本論文では、順序と位相の両方を仮定した不動点定理 ([6]) を用いて、3.5 階境界値問題

$$\begin{cases} D^{3.5}_0 u(t) + f(t, u(t)) = 0, \\ u(0) = u(1) = u''(0) = u''(1) = 0 \end{cases}$$

の解の存在と一意性を示す。f は $[0,1] \times [0,\infty)$ から $[0,\infty)$ への写像である。

不動点定理は大きくわめて、順序を仮定したものと、位相を仮定したものがある。前者には、Tarski の定理や Bourbaki-Kneser の定理などがあり、後者は Brouwer の定理や Banach の定理、角谷の定理などがある。ところが、何らかの非線形問題に適用する際には、順序と位相の両方が自然と満たされる場合が多い。実際、[1], [2] 等の研究では、連続関数全体の Banach 空間を考えているが、その要素の間には自然と順序を導入できる。

そこで、本論文では、順序と位相の両方を仮定した不動点定理に着目し、その適用を扱う。[9] では、4 階常微分方程式への適用を扱った。本論文では、$3 < \alpha \leq 4$ とし、α 階微分方程式への適用を行う。

構成は、以下の通りである。第 2 節で、分数階微分について解説する。第 3 節で、順序と位相の両方を仮定した不動点定理を紹介する。[6] の定理である。第 4 節が主結果である。[6] の定理を用いて、α 階微分方程式の境界値問題の解の存在性を論議する。$3 < \alpha \leq 4$ である。

2 分数階微分

本節では、分数階微分や積分の定義および補助命題を述べる。詳しくは、[4] およびその参考文献をみよ。

$\alpha > 0$ とする。f を $(0,\infty)$ から \mathbb{R} への関数とする。f の α 階 Riemann-Liouville 分数
補助定理 1. \(\alpha > 0, u \in C(0,1) \cap L^1(0,1) \) とする。このとき，分数階微分方程式 \(D^\alpha_0 u(t) = 0 \) は，一意解

\[
 u(t) = c_1 t^{\alpha-1} + c_2 t^{\alpha-2} + c_n t^{\alpha-n}
\]
をもつ。ただし \(c_i \in \mathbb{R} \) \((i = 1, 2, \ldots, n) \)，\(n = [\alpha] + 1 \) である。

補助定理 2. \(\alpha > 0, u \in C(0,1) \cap L^1(0,1) \) とする。また u の \(\alpha \) 階導関数は \(C(0,1) \cap L^1(0,1) \) の要素であるとする。このとき

\[
 I^\alpha_0 D^\alpha_0 u(t)
 = u(t) + c_1 t^{\alpha-1} + c_2 t^{\alpha-2} + \cdots + c_n t^{\alpha-n}
\]
である。ただし \(c_i \in \mathbb{R} \) \((i = 1, 2, \ldots, n) \)，\(n = [\alpha] + 1 \) である。

3 不動点定理

順序と位相の両方を仮定した不動点定理 [6] を紹介する。

\((X, \leq) \) を半順序集合とする，半順序集合の点列 \(\{x_n\} \) が単調非減少であるとは

\[
 x_1 \leq x_2 \leq x_3 \leq \cdots
\]
が成り立つときをいう。\(X \) から \(X \) への写像 \(T \) が単調非減少であるとは，任意の \(x, y \in X \) に対して \(x \leq y \) ならば

\[
 Tx \leq Ty
\]
が成り立つときをいう。

次の定理が [6] によって示された。念のため，証明を記す。

定理 3. \((X, \leq) \) を半順序集合とする。距離 \(d \) が存在して \((X, d) \) が完備距離空間となる。\(X \) の単調非減少列 \(\{x_n\} \) に対して

\[
 x_n \rightarrow x \in X \quad (n \rightarrow \infty)
\]
ならば，任意の \(x_n \in X \) に対して

\[
 x_n \leq x
\]
をみたすとする。\(T \) を \(X \) から \(X \) への単調非減少写像とし，ある \(k \in [0,1] \) が存在して，任意の \(x, y \in X \) に対して \(x \leq y \) ならば

\[
 d(Tx, Ty) \leq kd(x, y)
\]
をみたすとする。ある \(x_0 \in X \) が存在して \(x_0 \leq Tx_0 \) をみたすとする。このとき \(T \) は不動点をもつ。さらに，\(X \) の任意の要素 \(x, y \) が上限または下界をもつとする。このとき，\(T \) は一意の不動点をもつ。
証明. まずは $x_0 \leq T \leq T_0$ で T は単調非減少であるから

\[x_0 \leq T x_0 \leq T x_0 \leq \cdots \leq T^n x_0 \leq \cdots \]

である。また $x_0 \leq T x_0$ であるから

\[d(T^2 x_0, T x_0) \leq k d(T x_0, x_0) \]

である。さらに $T x_0 \leq T^2 x_0$ であるから

\[d(T^3 x_0, T^2 x_0) \leq k d(T^2 x_0, T x_0) \leq k^2 d(T x_0, x_0) \]

である。結局。

\[d(T^{n+1} x_0, T^n x_0) \leq k^n d(T x_0, x_0) \]

が任意の n に対して成り立つ。$n < m$ に対して

\[
d(T^m x_0, T^n x_0) \\
\leq d(T^m x_0, T^{m-1} x_0) + d(T^{m-1} x_0, T^{m-2} x_0) + \cdots + d(T x_0, x_0) \\
\leq (k^{m-1} + k^{m-2} + \cdots + k^n) d(T x_0, x_0) \\
< (k^n + k^{n+1} + \cdots) d(T x_0, x_0) \\
= \frac{k^n}{1 - k} d(T x_0, x_0)
\]

が成り立つ。このとき $\{T^n x_0\}$ は Cauchy 列である。X は完備であるから、ある $p \in X$ が存在して

\[\lim_{n \to \infty} T^n x_0 = p \]

である。そこで

\[x_0 \leq T x_0 \leq T^2 x_0 \leq \cdots \leq T^n x_0 \leq \cdots \leq T^{n+1} x_0 \leq \cdots \]

であり $T^n x_0 \to p$ であるから、$T^n x_0 \leq p$ が任意の n に対して成り立つ。このとき

\[
d(T p, p) \leq d(T p, T^{n+1} x_0) + d(T^{n+1} x_0, p) \\
\leq k d(T, T^p) + d(T^{n+1} x_0, p) \\
\leq k^n d(T, x_0) + d(T^{n+1} x_0, p)
\]

である。$n \to \infty$ として $d(T p, p) = 0$ を得る。以上から $T p = p$ である。

最後に、T の不動点は一意であることを示す。q を T の他の不動点とする。q が p と比較可能であるならば、$T^n q = q$ は $T^n p = p$ と任意の n に対して比較可能である。このとき

\[d(p, q) = d(T^n p, T^n q) \leq k^n d(p, q) \]

であるから $d(p, q) = 0$ を得る。

q が p と比較可能でないとする。このとき、ある $z \in X$ が存在して z は p, q と比較可能である。このとき $T^n z$ は $T^n p = p$ および $T^n q = q$ 任意の n に対して比較可能である。このとき

\[
d(p, q) \leq d(T^n p, T^n z) + d(T^n z, T^n q) \\
\leq k^n d(z, p) + k^n d(z, q)
\]

である。よって、$n \to \infty$ として $d(p, q) = 0$ を得る。□

定理 3 は、さらに拡張されている。例えば、[5]などを参照されたい。

4 主結果

Nieto-López による顺序と位相の両方を仮定した不動点定理 (定理 3) を、境界値問題

\[
\begin{align*}
 D_{\alpha}^0 u(t) + f(t, u(t)) &= 0, \\
 u(0) &= u(1) = u''(0) = u''(1) = 0
\end{align*}
\]

に適用する。ここで、$3 < \alpha \leq 4$ であり f は $[0, 1] \times [0, \infty)$ から \mathbb{R} への写像である。

次の補助定理が必要である。

補助定理 4. $h \in C[0, 1]$ とする。$3 < \alpha \leq 4$ とする。このとき、境界値問題

\[
\begin{align*}
 D_{\alpha}^0 u(t) &= h(t), \quad 0 < t < 1 \\
 u(0) &= u(1) = u''(0) = u''(1) = 0
\end{align*}
\]

の一意の解は

\[u(t) = \int_0^1 G(t, s) h(s) ds \]

である。ここで $[0, 1] \times [0, 1]$ への関数 G は、次で定義される。

Memoirs of The Faculty of Engineering, Tamagawa University, No.49 (2014) 13
$$G(t, s) = \begin{cases}
\frac{1}{\Gamma(\alpha)} \left((t-s)^{\alpha-1} + t^{\alpha-1}(1-s)^{\alpha-3} \left(\frac{(\alpha-3)(\alpha-4)}{2(2\alpha-5)} s^{2} - \frac{(\alpha-3)(\alpha-4)}{2\alpha-5} s - 1 \right)
+ t^{\alpha-3}(1-s)^{\alpha-3} \left(\frac{(\alpha-1)(\alpha-2)}{2\alpha-5} s^{2} - \frac{(\alpha-1)(\alpha-2)}{2(2\alpha-5)} s - 1 \right) \right) (0 \leq s \leq t \leq 1)
\frac{1}{\Gamma(\alpha)} \left(t^{\alpha-1}(1-s)^{\alpha-3} \left(\frac{(\alpha-3)(\alpha-4)}{2(2\alpha-5)} s^{2} - \frac{(\alpha-3)(\alpha-4)}{2\alpha-5} s - 1 \right)
+ t^{\alpha-3}(1-s)^{\alpha-3} \left(\frac{(\alpha-1)(\alpha-2)}{2\alpha-5} s^{2} - \frac{(\alpha-1)(\alpha-2)}{2(2\alpha-5)} s - 1 \right) \right) (0 \leq t \leq s \leq 1)
\end{cases}$$

証明
補助命題 1 および 2 より
$$u(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} h(s) ds + C_{1} t^{\alpha-1} + C_{2} t^{\alpha-2} + C_{3} t^{\alpha-3} + C_{4} t^{\alpha-4}$$
である. また
$$u'(t) = \frac{\alpha-1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-2} h(s) ds + (\alpha-1) t^{\alpha-2} + (\alpha-2) C_{2} t^{\alpha-3} + (\alpha-3) C_{3} t^{\alpha-4}$$
である. さらに
$$u''(t) = \frac{(\alpha-1)(\alpha-2)}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-3} h(s) ds + (\alpha-1)(\alpha-2) C_{1} t^{\alpha-3} + (\alpha-2)(\alpha-3) C_{2} t^{\alpha-4} + (\alpha-3) C_{3} t^{\alpha-5}$$
である. したがって
$$u(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{1} (1-s)^{\alpha-1} h(s) ds + C_{1} + C_{3} = 0$$
かつ
$$\frac{(\alpha-1)(\alpha-2)}{\Gamma(\alpha)} \int_{0}^{1} (1-s)^{\alpha-3} h(s) ds + (\alpha-1)(\alpha-2) C_{1} + (\alpha-3)(\alpha-4) C_{3} = 0$$
である. これより
$$C_{1} = \frac{1}{\Gamma(\alpha)} \int_{0}^{1} (1-s)^{\alpha-3} \left(\frac{(\alpha-3)(\alpha-4)}{2(2\alpha-5)} s^{2} - \frac{(\alpha-3)(\alpha-4)}{2\alpha-5} s - 1 \right) h(s) ds$$
および
$$C_{3} = \frac{1}{\Gamma(\alpha)} \int_{0}^{1} (1-s)^{\alpha-3} \left(\frac{(\alpha-1)(\alpha-2)}{2\alpha-5} - \frac{(\alpha-1)(\alpha-2)}{2(2\alpha-5)} s^{2} \right) h(s) ds$$
を得る. 以上により
$$u(t) = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha-1} h(s) ds + C_{1} t^{\alpha-1} + C_{3} t^{\alpha-3} = \int_{0}^{1} G(t, s) ds$$
を得る. □
補助命題 4 の関数 \(G(\cdot, s) \) は連続である。実際、次を得る。

補助命題 5. 3 < \(\alpha \leq 4 \) とする。\(G \) を補助命題 4 の関数とする。このとき

\[
\int_0^1 G(t, s)ds = \frac{1}{\alpha \Gamma(\alpha)} \left(t^\alpha - \frac{3(\alpha - 2)}{2\alpha - 5} t^{\alpha-1} + \frac{\alpha - 1}{2\alpha - 5} t^{\alpha-3} \right)
\]

である。ここで 0 ≤ s ≤ t ≤ 1 である。

次が主結果である。

定理 6. \(f \) を \([0, 1] \times [0, \infty) \) から \([0, \infty) \) への関数とする。\(f \) は連続で、第 2 変数に関して単調非減少とする。\(\lambda \in [0, 1] \) が存在して、任意の \(y \geq x \) なる \(x, y \in [0, \infty) \) および \(t \in [0, 1] \) に対して

\[
f(t, y) - f(t, x) \leq \lambda(y - x)
\]

が成り立つとする。ただし

\[
\Lambda = \max_{0 \leq t \leq 1} \int_0^1 G(t, s)ds
\]

である。このとき、境界値問題

\[
\begin{cases}
P_0u(t) + f(t, u(t)) = 0, \\
u(0) = u(1) = u'(0) = u''(1) = 0
\end{cases}
\]

は、一意の非負解をもつ。

証明. 補助命題 5 より、\(\Lambda \) は存在することに注意されたい。\(P = \{u \in C[0, 1] \mid u(t) \geq 0 \} \) とする。このとき \((P, d) \) は

\[
d(x, y) = \sup_{0 \leq t \leq 1} |x(t) - y(t)|
\]

によって定める距離によって完備となる。\(P \) 上の作用素 \(T \) を

\[
(Tu)(t) = \int_0^1 G(t, s)f(s, u(s))ds
\]

で定める。ここで \(x \in P \) である。このとき、\(G(t, s) \) は連続で非負であるから、\(T(P) \subseteq P \) である。\(u \geq v \) となる \(u, v \in P \) より \(t \in [0, 1] \) をとる。このとき

\[
(Tu)(t) = \int_0^1 G(t, s)f(s, u(s))ds
\]

である。よって \(T \) は単調非減少である。\(u \geq v \) となる \(u, v \in P \) に対して

\[
d(Tu, Tv) = \sup_{0 \leq t \leq 1} |Tu(t) - Tv(t)|
\]

である。また \(T0 \geq 0 \) である。定理 3 より、\(T \) はただ 1 つの不動点をもつ。□

5 おわりに

順序と位相の両方を仮定した不動点定理 ([6]) もしくは分数階微分に関連して、いくつかの講演発表を行った。

弘前で行われた国際会議「第 8 回非線形と凸解析 (NACA2013)」（弘前大学、2013 年 8 月 2日から 8 月 6 日まで）において、渡辺が講演発表を行った。定理 3 が縮小写像に関連する結果であるのに対して、Kannan 写像に関する結果を報告した。タイトルは「Kannan mappings in partially ordered sets with metric」である。詳しくは [10] を参照されたい。

京都数理解析研究所によって行われた研究集会「非線形関数解析学と凸解析学の研究」（京都大学、2013 年 10 月 9 日から 10 月 11 日まで）において、豊田が講演発表を行った。タイトルは「Kannan mapping theorems in partially ordered sets」である。詳しくは [11] を参照されたい。
Generalization of Knežević-Miljanović’s theorem to a class of fractional differential equations

Received, February 12, 2014